Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 75(20): 6471-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700551

RESUMO

DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.


Assuntos
Armoracia/microbiologia , Bactérias/metabolismo , Compostos de Bifenilo/metabolismo , Bifenilos Policlorados/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/metabolismo , Isótopos de Carbono , Primers do DNA/genética , DNA Bacteriano/genética , Genes Bacterianos , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
2.
Sci Total Environ ; 407(12): 3611-9, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18573518

RESUMO

DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing (13)C-labeled substrate to a microbial community and subsequent analyses of the (13)C-DNA isolated from the community. Isopycnic centrifugation permits separating (13)C-labeled DNA of organisms that utilized the substrate from (12)C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.


Assuntos
Bactérias/classificação , Bactérias/genética , Marcação por Isótopo/métodos , Biodegradação Ambiental , Isótopos de Carbono , DNA Bacteriano/química , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...